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Lithiated allylic sulfoxides and phosphine oxides un-
dergo diastereoselective conjugate addition to cyclic
enones to provide vinylic products whose stereochemistry
concisely relates to the geometry of the double bond in
the starting allylic system.1 From (E)-allylic systems are
obtained syn-, and from (Z), the anti-, products.1 There
is substantial impetus for application of the process to
carbonyl-stabilized allylic systems,2 in particular those
bearing oxygen at C-4 (Scheme 1), as this would provide
synthetically useful, yet otherwise inaccessible, cyclic
enones bearing side chains with stereodefined R-hydroxyl
groups. Two systems were selected for examinations
lithiated (E)-4-alkoxy-3-butenoate esters 1 and lithiated
γ-crotonolactone 2. Should reactions of 1 proceed through
a 10-membered TS,1 or of 2 via a 9-membered “exo” TS3
with a cyclic enone, these will provide enolates 3 and 4
with equivalent stereochemistries (Scheme 1). The eno-
late 3 upon protonation would provide the syn-product
5. The enolate 4 upon protonation, ring opening, and
double-bond isomerization would also give 5. In both
cases, we are unaware of literature precedents.4

Ethyl (2E)-4-(benzyloxy)but-2-enoate (6)5 was treated
with LDA in THF at -60 °C, then with cyclopentenone,
and quenched at the same temperature. However, while

reaction took place through C-4, the product was a
60:40 mixture of diastereomers of the (Z)-isomer 7 (cf. 5,
Scheme 1). The reaction is thus distinct to conjugate

addition of lithiated allylic esters, which react through
C-2.2,6 On the other hand, lithiated butenolide 2 added
cleanly to (()-4-tert-butoxycyclopent-2-enone (8) in THF
at -78 °C to give diastereomers 9-12 (60-65% overall),
in a ratio of 80:15:3:2, or at -90 °C to give 9 and 10 only
(92:8, 83%). The major product 9 corresponds to the syn-
isomer (cf. Scheme 1),1,7 and its formation is in accord
with the prediction of Scheme 1. THF was the best
among ether solvents, and HMPA or Lewis acids, such
as zinc chloride and magnesium tert-butoxide, depressed
yields of 9. The importance of lithium chelation is
underscored by the fact that the TMS ether 13 of
γ-crotonolactone with Lewis acids in dichloromethane or
MeCN at -78 °C with enone 8 gave as major products
the cis-disubstituted adducts 10 and 12. Thus, product
ratio of 9-12 with SnCl4 (0.1 equiv) in dichloromethane
was 5:44:3:48 (90%); with HgI2 in dichloromethane the
cis adducts 10 and 12 (50:50) only were formed, albeit in
low yield (30%).8
Addition of (4R)-enone 149 to 2-lithio-1,3-dithiane in

THF containing HMPA (2 equiv) at -78 °C gave adduct
15 (86%), treatment of which with TMSOTf (10 mol %)
in dichloromethane at room temperature furnished enone
16 (86%).10 Next, enone 16 at -90 °C was treated with
lithiated butenolide 2 in THF to give adducts 17 and 18
(95:5, 52% overall). The structure of the major isomer
from racemic enone as revealed by X-ray crystallographic
analysis again is in accord with the transition state model
of Scheme 1.22
Absolute configurations at C-1′ and C-3 in 17 cor-

respond to those at C-4 and C-5 in (+)-brefeldin A 23
(Scheme 2). While the butenolide ring in 17 was opened
by LiOH in aqueous MeOH to give the (E)-unsaturated
acid 19 and the (Z)-isomer, the use of LiSPh (1.1 equiv)
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and TiCl4 (1.5 equiv) in THF gave solely the (E)-acid (58%
overall). This method for opening of butenolides has not
been described previously.11 The acid 19 was esterified,
and the free hydroxy group was protected as the MEM
ether, a group that, as in a related case,12 controlled
stereoselectivity in the reduction of the cyclopentanone
carbonyl with L-Selectride. The resulting alcohol epimers
(75:25) were protected as MEM ethers, and the dithiane
in the major epimer was converted into the free aldehyde
20 (58%) with an excess of MeI and sodium bicarbonate
in aqueous MeCN.13 The aldehyde with the Wittig
reagent from phosphonium salt 2114 in THF containing
LiBr (1 equiv) gave the alkene (81%, E/Z 87:13), treat-
ment of which with aqueous HCl in THF and then with
LiOH in MeOH gave (E)-hydroxy acid 22 (86%).15 Lac-
tonization and deprotection gave (+)-brefeldin A, mp
203-204 °C; [R]22D +83.0° (c 0.04, MeOH).16

Clearly, the conjugate addition of lithiated butenolide
2 to (R)-enone 14 or the (S)-enantiomer9 and to other
cyclic enones such as 16 bearing a stereodirecting group
at C-4 presents a simple operational means of controlling
installation of absolute configuration at oxygen-bearing
functional groups exocyclic to the enone. The conjugate
addition reactions display a hitherto unrevealed stereo-

selectivity in the reactions of the intensively examined
butenolide.17
The facile elimination of tert-butoxide from 15 to

produce the enantiomerically-equivalent enone 16 is also
significant; the enantiomer 14 serves as an operational
equivalent of “chiral” cyclopentadienone, which is ef-
fective under aprotic conditions. The use of racemic
4-acetoxycyclopentenone as an operational equivalent of
“racemic” cyclopentadienone was described some years
ago,18 but the enantiomers of the acetoxy enone cannot
be easily obtained,9 and cannot be used under aprotic
conditions.
While the current synthesis of brefeldin A is not as

convergent as originally planned,4,19,20 it has clear poten-
tial in preparation of analogues.21,22
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Scheme 2a

Key: a(a) (i) CH2N2 then MEMCl, i-Pr2NEt , CH2Cl2, 12 h (86%);
(ii) K-Selectride, THF, -78 °C, 1 h (79%); (iii) MEMCl, i-Pr2NEt,
CH2Cl2, 10 h (85%); (iv) MeI, NaHCO3, MeCN, rt (58%); (b) (i)
n-BuLi, phosphonium bromide 21, LiBr (1 equiv), THF, -78 °C
then KOCMe3 (78%, E/Z 87:13); (ii) 1 mol L HCl, THF, 10 h, rt,
workup then LiOH, MeOH, H2O, 10 h (86%); (c) (i) 2,4,6-
trichlorobenzoyl chloride, Et3N, THF, 6 h, DMAP, toluene, reflux,
14 h (78%); (ii) TiCl4, CH2Cl2, 0 °C, 2 h (96%).
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